Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rapid inclusion characterisation by pulse distribution analysis optical emission spectroscopy-recent development
RISE, Swerea, Swerea KIMAB.
RISE, Swerea, Swerea KIMAB.
SSAB EMEA.
2013 (Chinese)In: Yejin Fenxi/Metallurgical Analysis, ISSN 10007571, Vol. 33, no 1, p. s.7-12Article in journal (Refereed)
Abstract [zh]

The purpose of the work is to further develop and validate the optical emission method pulse distribution analysis (PDA) for rapid inclusion characterisation in steel production. The experimental work was focused on investigation of several operational parameters: spark energy, spark frequency and time gating of signal acquisition. The results showed that a low spark energy improves the detection limit, but at the expense of measuring statistics due to a smaller sample volume. The measuring frequency proved to have no significant influence on the analytical results, but several existing instruments cannot handle the highest spark frequencies above about 300 Hz in PDA mode due to limitations in the electronics. Investigation of time gating (TRS) gave only a marginal improvement in the detection limit of Si outliers above the metallic content. The work also revealed that there is a risk to detect "false" outliers due to asymmetric intensity distributions. This has resulted in the development of more advanced algorithms for outlier detection, increasing the accuracy of the method. Another limitation found is that the particle number density must not exceed about 10 000 inclusions/mm3 for the method to effectively detect single inclusions. A method to overcome this limitation has been suggested, but not yet evaluated. The accuracy of quantitative determination of the Al content in inclusions has been verified by reference methods. In conclusion, it has been demonstrated that state-of-the-art PDA is a very powerful technique for rapid inclusion characterisation in steels. Furthermore, the speed of analysis is sufficiently high for process feedback and controllable.

Place, publisher, year, edition, pages
2013. Vol. 33, no 1, p. s.7-12
Keywords [en]
Non-metallic inclusions, Optical emission spectroscopy, Pulse distribution analysis
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-12825Scopus ID: 2-s2.0-84874997225OAI: oai:DiVA.org:ri-12825DiVA, id: diva2:973018
Available from: 2016-09-22 Created: 2016-09-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Scopushttp://www.scopus.com/inward/record.url?eid=2-s2.0-84874997225&partnerID=40&md5=a9c1c401c2cb736e48a86fd78a5aefd5
By organisation
Swerea KIMAB
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 38 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.34.0