Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluid flow and mass transfer in an inductively stirred four-ton melt of molten steel: A comparison of measurements and predictions
Cairo University.
Massachusetts Institute of Technology.
MEFOS − Stiftelsen för Metallurgisk Forskning.
1984 (English)In: Metallurgical Transactions B, ISSN 3602141, Vol. 15, no 4, 633-640 p.Article in journal (Refereed)
Abstract [en]

Experimental measurements are reported on melt velocities and on the rate at which immersed carbon rods dissolve in a 4-ton induction furnace, holding a low carbon steel melt. These measurements are compared with theoretical predictions, based on the numerical solution of Maxwell's equations and the turbulent Navier-Stokes equations. In general, good agreement has been obtained, both regarding the absolute values of the velocities and the mass transfer coefficients and the trends predicted by the theoretical analysis. In addition to providing further proof regarding the applicability of the mathematical modeling technique, the principal contribution of the work is that it provides an improved insight into the behavior of inductively stirred melts. In particular it was found that for an inductively stirred melt both the velocities and the rate of turbulence energy dissipation are relatively uniform spatially, in contrast to bubble stirred systems, where most of the agitation is confined to the jet plume and to the near surface region. It was found, furthermore, that the mass transfer coefficient characterizing the rate of dissolution of immersed carbon rods depends both on the absolute values of the melt velocity and on the local values of the turbulence intensity; thus significant mass transfer will occur in the region of the eye of the circulation, where the absolute value of the mean velocity is small. © 1984 The Metallurgical of Society of AIME.

Place, publisher, year, edition, pages
1984. Vol. 15, no 4, 633-640 p.
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-12764DOI: 10.1007/BF02657283Scopus ID: 2-s2.0-0021601744OAI: oai:DiVA.org:ri-12764DiVA: diva2:972956
Available from: 2016-09-22 Created: 2016-09-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://rd.springer.com/article/10.1007%2FBF02657283
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0