Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A unified mechanism for the formation of oscillation marks
RISE, Swerea, Swerea MEFOS.
Imperial College London.
Imperial College London.
Tata Steel Research Development and Technology.
2012 (English)In: Metallurgical and materials transactions. B, process metallurgy and materials processing science, ISSN 1073-5615, E-ISSN 1543-1916, Vol. 43, no 1, p. 109-122Article in journal (Refereed)
Abstract [en]

Oscillation marks (OMs) are regular, transverse indentations formed on the surface of continuously cast (CC) steel products. OMs are widely considered defects because these are associated with segregation and transverse cracking. A variety of mechanisms for their formation has been proposed (e.g., overflow, folding, and meniscus freezing), whereas different mark types have also been described (e.g., folded, hooks, and depressions). The current work uses numerical modeling to formulate a unified theory for the onset of OMs. The initial formation mechanism is demonstrated to be caused by fluctuations in the metal and slag flow near the meniscus, which in turn causes thermal fluctuations and successive thickening and thinning of the shell, matching the thermal fluctuations observed experimentally in a mold simulator. This multiphysics modeling of the transient shell growth and explicit prediction of OMs morphology was possible for the first time through a model for heat transfer, fluid flow, and solidification coupled with mold oscillation, including the slag phase. Strategies for reducing OMs in the industrial practice fit with the proposed mechanism. Furthermore, the model provides quantitative results regarding the influence of slag infiltration on shell solidification and OM morphology. Control of the precise moment when infiltration occurs during the cycle could lead to enhanced mold powder consumption and decreased OM depth, thereby reducing the probability for transverse cracking and related casting problems. © The Minerals, Metals & Materials Society and ASM International 2011.

Place, publisher, year, edition, pages
2012. Vol. 43, no 1, p. 109-122
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-12676DOI: 10.1007/s11663-011-9583-5Scopus ID: 2-s2.0-84860125947OAI: oai:DiVA.org:ri-12676DiVA, id: diva2:972868
Available from: 2016-09-22 Created: 2016-09-22 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://rd.springer.com/article/10.1007%2Fs11663-011-9583-5
By organisation
Swerea MEFOS
In the same journal
Metallurgical and materials transactions. B, process metallurgy and materials processing science
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.34.0