Carboxymethyl cellulose (CMC) was added in various amounts (< 10% (w/w)) to a lowcharged (enzymatically pre-treated) NFC, and the suspensions were blended by either a low-shear propeller mixing- or high shear homogenization protocol. The suspensions were thereafter oven-dried, and redispersed using a high shear protocol. It was found that the mixing method has a profound effect on the apparent rheology of the never-dried systems. The addition of highly charged CMC-grades enabled, already at 1% (w/w) addition, the apparent dispersion of dried NFC. The rheological responses (viscosity and storage modulus) of the neverdried NFC-CMC systems were judged as conserved, when the rheological responses of the redispersed systems were compared with those of never-dried systems that had been produced by propeller mixing. The rheological responses of the redispersed systems were on the other hand found to be lower when compared to the rheological responses of the never-dried systems that had been produced by high shearing mixing. However, the mechanical- and barrier properties of the redispersed systems were found to be inferior to the never-dried equivalents - regardless of the mixing protocol.