Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advanced biomaterials based on nanofibrillated cellulose: from nanopapers to nanomedicine
RISE, Innventia, PFI – Paper and Fiber Research Institute.ORCID iD: 0000-0002-6183-2017
2014 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Nanofibrillated cellulose (NFC) offers a wide range of interesting opportunities and advantages, being biodegradable, renewable and thus environmentally sound. Extensive research has been performed on the effective production and application of NFC. The proposed applications extend from being a component in paper, coatings and composite materials to being applied in bio-medicine as part of wound dressings or in drug delivery systems. Some of the major advantages of NFC are the dimensions and the structural and chemical composition of nanofibrils, which lead to the formation of dense networks with optimized optical and mechanical properties. In this respect, the concept of nanopaper has been introduced. Nanopapers are strong structures, with high light transmittance and smooth surfaces. These characteristics open for novel applications, including the formation of smooth substrates for printing functionality. A recently explored example is the printing of bioactive biomacromolecules and conductive structures on tailor-made nanopapers, which could form the basis for novel biosensors. Additionally, nanobarriers are most promising in novel packaging applications where the self-assembly properties of the material facilitate the formation of dense structures with high barrier against oxygen. However, NFC alone does not seem to be sufficient for the formation of adequate nanobarriers due to the brittle and hygroscopic characteristics of the material. Novel biocomposite concepts need thus closer attention, where the strong and high barrier properties of NFC could be complemented with adequate bioplastics and additives for the formation of ductile films, suitable for conversion processes. From the biomedical point of view, NFC offers several advantages. Depending on the structural and chemical composition of the material and the cross-linking with adequate polymers and particles, micro-porous and elastic gels can be formed. Such gels can hold a considerable amount of water, thus being an excellent material for keeping a moist environment during wound healing and for facilitating the regeneration process of human tissue. Additionally, NFC gels based on oxidized nanofibrils can have pH-sensitive characteristics, a property with potential in drug delivery. With the intention of giving an extensive description of NFC and its modern applications, this presentation will be divided into three main sections; i) production and definition, ii) characterization including structural, chemical and biological aspects and iii) novel applications of NFC from nanopapers to biomedical devices.

Place, publisher, year, edition, pages
2014.
National Category
Nano Technology Paper, Pulp and Fiber Technology Medical Biotechnology Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-9666OAI: oai:DiVA.org:ri-9666DiVA: diva2:968419
Conference
Invited keynote – VIII Iberoamerican congress on pulp and paper research. 26-28 November 2014, Medellín, Colombia.
Available from: 2016-09-12 Created: 2016-09-12 Last updated: 2016-10-26Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Chinga-Carrasco, Gary
By organisation
PFI – Paper and Fiber Research Institute
Nano TechnologyPaper, Pulp and Fiber TechnologyMedical BiotechnologyMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0