Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optical methods for the quantification of the fibrillation degree of bleached MFC materials
RISE, Innventia, PFI – Paper and Fiber Research Institute.ORCID iD: 0000-0002-6183-2017
2013 (English)In: Micron, ISSN 0968-4328, E-ISSN 1878-4291, Vol. 48, p. 42-48Article in journal (Refereed) Published
Abstract [en]

In this study, the suitability of optical devices for quantification of the fibrillation degree of bleached microfibrillated cellulose (MFC) materials has been assessed. The techniques for optical assessment include optical scanner, UV-vis spectrophotometry, turbidity, quantification of the fiber fraction and a camera system for dynamic measurements. The results show that the assessed optical devices are most adequate for quantification of the light transmittance of bleached MFC materials. Such quantification yields an estimation of the fibrillation degree. Films made of poorly fibrillated materials are opaque, while films made of highly fibrillated materials containing a major fraction of nanofibrils are translucent, with light transmittance larger than 90%. Finally, the concept of using images acquired with a CCD camera system, for estimating the fibrillation degree in dynamic conditions was exemplified. Such systems are most interesting as this will widen the applicability of optical methods for quantification of fibrillation degree online in production lines, which is expected to appear in the years to come.

Place, publisher, year, edition, pages
2013. Vol. 48, p. 42-48
National Category
Nano Technology Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-9620DOI: 10.1016/j.micron.2013.02.005Scopus ID: 2-s2.0-84875919378OAI: oai:DiVA.org:ri-9620DiVA, id: diva2:968373
Available from: 2016-09-12 Created: 2016-09-12 Last updated: 2023-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Chinga-Carrasco, Gary

Search in DiVA

By author/editor
Chinga-Carrasco, Gary
By organisation
PFI – Paper and Fiber Research Institute
In the same journal
Micron
Nano TechnologyMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf