Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimisation of Pulsed Ultrasonic Velocimetry system and transducer technology for industrial applications
Cape Peninsula University of Technology, South Africa.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.ORCID iD: 0000-0002-7856-2324
Cape Peninsula University of Technology, South Africa.
2013 (English)In: Ultrasonics, ISSN 0041-624X, E-ISSN 1874-9968, Vol. 53, no 2, p. 459-469Article in journal (Refereed) Published
Abstract [en]

Pulsed Ultrasonic Velocimetry, commonly referred to as Ultrasonic Velocity Profiling (UVP) in research and engineering applications, is both a method and a device to measure an instantaneous one-dimensional velocity profile in opaque fluids along a measurement axis by using Doppler echography. Studies have suggested that the accuracy of the measured velocity gradient close to wall interfaces need to be improved. The reason for this is due to distortion caused by cavities situated in front of ultrasonic transducers, measurement volumes overlapping wall interfaces, refraction of the ultrasonic wave as well as sound velocity variations (Doppler angle changes). In order to increase the accuracy of velocity data close to wall interfaces and solve previous problems a specially designed delay line transducer was acoustically characterised and evaluated. Velocity profiles measured using the delay line transducer, were initially distorted due to the effect of finite sample volume characteristics and propagation through the delay line material boundary layers. These negative effects were overcome by measuring physical properties of the ultrasonic beam and implementing a newly developed deconvolution procedure. Furthermore, custom velocity estimation algorithms were developed, which improved the time resolution and penetration depth of the UVP system. The optimised UVP system was evaluated and compared to standard transducers in three different straight pipes (inner diameters of 16, 22.5 and 52.8 mm). Velocity data obtained using the optimised UVP system showed significant improvement close to wall interfaces where the velocity gradients are high. The new transducer technology and signal processing techniques reduced previously mentioned problems and are now more suitable for industrial process monitoring and control.

Place, publisher, year, edition, pages
2013. Vol. 53, no 2, p. 459-469
Keywords [en]
Food Engineering, Acoustic characterisation, Deconvolution, Ultrasonic transducer, Ultrasonic Velocity Profiling, Velocity profile estimation
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-9427DOI: 10.1016/j.ultras.2012.08.014Scopus ID: 2-s2.0-84870247075OAI: oai:DiVA.org:ri-9427DiVA, id: diva2:967302
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Wiklund, Johan

Search in DiVA

By author/editor
Wiklund, Johan
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Ultrasonics
Food Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf