Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Shaping of gelling biopolymer drops in an elongation flow
SIK – Institutet för livsmedel och bioteknik.
SIK – Institutet för livsmedel och bioteknik.
SIK – Institutet för livsmedel och bioteknik.
2002 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 252, no 2, 297-308 p.Article in journal (Refereed)
Abstract [en]

Shaping, defined as deformation in combination with gel formation of gelatine and ?-carrageenan drops in an elongation flow, was studied. The focus was to investigate the possibility of shaping and fixating small drops in the diameter range 20 to 229 ?m. In the shaping progress and the influence of experimental properties, the viscosity, temperature, and flow of the deforming fluid were examined on the final drop shape. In the experiments a hot emulsion of an aqueous biopolymer solution in silicone oil was injected into cold silicone oil where a deforming elongation flow field existed. After injection, a temperature decrease in the drops resulted in a gel formation of the biopolymer and a fixation of the deformed drop in the flow. The shape was measured and the effect on the drop aspect ratio was determined by image analysis. Over the total drop diameter range, ?-carrageenan was more ellipsoid-shaped than gelatine, with a maximum aspect ratio of 6 compared to 4 for gelatine. For small drops, around 22 ?m, it is possible to shape ?-carrageenan, but for gelatine small drops tend to be unaffected. An increase in viscosity, temperature, and flow resulted in an increase in the final fixated shape of the drops. The differences in drop deformation between the biopolymers were explained by drop-viscosity/oil differences and differences in the kinetics of gel formation. The different gel formation kinetics resulted in a short, well-defined, shaping process for ?-carrageenan, while for gelatine the process was more complex, with both deformation and relaxation present at different stages. © 2002 Elsevier Science (USA).

Place, publisher, year, edition, pages
2002. Vol. 252, no 2, 297-308 p.
Keyword [en]
Food Engineering
Keyword [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8867DOI: 10.1006/jcis.2002.8511PubMedID: 16290793OAI: oai:DiVA.org:ri-8867DiVA: diva2:966740
Available from: 2016-09-08 Created: 2016-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://www.scopus.com/inward/record.url?eid=2-s2.0-0036970295&partnerID=40&md5=e86ce1e592cf1fbe0340a10df5f43f31
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Journal of Colloid and Interface Science
Food Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0