Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Degradation of low density polyethylene during extrusion.: IV. Off-flavor compounds in extruded films of stabilized LDPE
SIK – Institutet för livsmedel och bioteknik.
2005 (English)In: Journal of Applied Polymer Science, ISSN 0021-8995, E-ISSN 1097-4628, Vol. 95, no 3, 583-595 p.Article in journal (Refereed)
Abstract [en]

This study was aimed at finding a correlation between the experienced off-flavor in packed foods and the presence of specific degradation products in LDPE pack-aging films. The possibility to trap degradation products by chemical reactions with scavengers, i.e., a zeolite additive or antioxidants, was investigated This would prevent degradation products from migrating to the polymer film surface and further into food in contact with the film. It was found that off-flavor noted in water packed in LDPE films depended on extrusion temperature and exposure time for the melt to oxygen, that is, the parameters that influence the contents of oxidation products that are able to migrate from the polymer film. It was also found that adsorption of oxidative degradation products in a zeolite additive or protection of LDPE by using antioxidants could prevent off-flavor in the packed product (water). However, the antioxidant should be selected with regard to extrusion temperature because thermal instability in the additive might jeopardize the intended effect. Multifunctional antioxidants seem to provide improved protection, the most effective one evaluated in this work being Irganox E201, i.e., vitamin E. Concentrations of oxidized degradation products are well correlated to the perceived off-flavor in the packed water. The highest correlation between off-flavor and oxidized components was found for ketones in the range of C 7 to C9 and aldehydes in the range of C6 to C9. © 2004 Wiley Periodicals, Inc.

Place, publisher, year, edition, pages
2005. Vol. 95, no 3, 583-595 p.
Keyword [en]
Food Engineering
Keyword [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8828DOI: 10.1002/app.21264OAI: oai:DiVA.org:ri-8828DiVA: diva2:966701
Available from: 2016-09-08 Created: 2016-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.scopus.com/inward/record.url?eid=2-s2.0-12344287892&partnerID=40&md5=74482b9e2db83067eb7cbefdfa6ac278
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Journal of Applied Polymer Science
Food Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 23 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0