Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
How does co-product handling affect the carbon footprint of milk?: Case study of milk production in New Zealand and Sweden
SIK – Institutet för livsmedel och bioteknik.
SIK – Institutet för livsmedel och bioteknik.
2011 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502, Vol. 16, no 5, 420-430 p.Article in journal (Refereed)
Abstract [en]

Purpose This paper investigates different methodologies of handling co-products in life cycle assessment (LCA) or carbon footprint (CF) studies. Co-product handling can have a significant effect on final LCA/CF results, and although there are guidelines on the preferred order for different methods for handling co-products, no agreed understanding on applicable methods is available. In the present study, the greenhouse gases (GHG) associated with the production of 1 kg of energy-corrected milk (ECM) at farm gate is investigated considering co-product handling. Materials and methods Two different milk production systems were used as case studies in the investigation of the effect of applying different methodologies in coproduct handling: (1) outdoor grazing system in New Zealand and (2) mainly indoor housing system with a pronounced share of concentrate feed in Sweden. Since the cows produce milk, meat (when slaughtered), calves, manure, hides, etc., the environmental burden (here GHG emissions) must be distributed between these outputs (in the present study no emissions are attributed to hides specifically, or to manure which is recycled on-farm). Different methodologically approaches, (1) system expansion (two cases), (2) physical causality allocation, (3) economic allocation, (4) protein allocation and (5) mass allocation, are applied in the study. Results and discussion The results show large differences in the final CF number depending on which methodology has been used for accounting co-products. Most evident is that system expansion gives a lower CF for milk than allocation methods. System expansion resulted in 63- 76% of GHG emissions attributed directly to milk, while allocation resulted in 85-98%. It is stressed that meat is an important by-product from milk production and that milk and beef production is closely interlinked and therefore needs to be considered in an integrated approach. Conclusions To obtain valid LCA/CF numbers for milk, it is crucial to account for by-products. Moreover, if CF numbers for milk need to be compared, the same allocation procedure should be applied. © 2011 Springer-Verlag.

Place, publisher, year, edition, pages
2011. Vol. 16, no 5, 420-430 p.
Keyword [en]
Food Engineering
Keyword [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8743DOI: 10.1007/s11367-011-0283-9OAI: oai:DiVA.org:ri-8743DiVA: diva2:966616
Available from: 2016-09-08 Created: 2016-09-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.scopus.com/inward/record.url?eid=2-s2.0-79960623043&partnerID=40&md5=ce1a5478456c010fdd71206fe3288766
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
The International Journal of Life Cycle Assessment
Food Science

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.27.0