Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Microstructure and image analysis of mayonnaises
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.ORCID iD: 0009-0000-1671-4583
Show others and affiliations
1999 (English)In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 13, no 2, p. 113-125Article in journal (Refereed) Published
Abstract [en]

The microstructure of full-fat mayonnaise was characterised at different structural levels by using confocal laser scanning microscopy, CLSM, and transmission electron microscopy on freeze-etched samples. The size of droplets varied, and in 80% mayonnaise many very small droplets were found between larger droplets. The colloidal structural parameters were quantified on CLSM images. A stereological approach was used to estimate the droplet size, the interfacial surface area between the fat phase and water phase, and the size of the egg yolk aggregates. The mayonnaise samples were produced by a cold process line in a pilot plant equipment. A two-level fully factorial experimental design was used, with the processing parameters, (speed of the emulsification cylinder, the speed of the visco-rotor and the out-temperature) as design variables. The results showed that the speed of the emulsification cylinder had a main effect on the size of the droplets. No other effects were found when the speed of the emulsification cylinder was high. When the speed was slow, however, an interaction effect was found on the size of the droplets. The distribution of egg yolk was affected by the processing conditions and by the quality of the egg yolk. The storage modulus G? had higher values when the mayonnaise was formed of smaller droplets at a high emulsification cylinder speed. Lower values of G? were found when the mayonnaise was formed of larger droplets produced by a slower emulsification cylinder speed. © 1999 Elsevier Science Ltd.

Place, publisher, year, edition, pages
1999. Vol. 13, no 2, p. 113-125
Keywords [en]
Food Engineering
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8604OAI: oai:DiVA.org:ri-8604DiVA, id: diva2:966477
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2023-10-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.scopus.com/inward/record.url?eid=2-s2.0-0039253310&partnerID=40&md5=38369318ceab6a64a6d047efda3ab6e9

Authority records

Altskär, Annika

Search in DiVA

By author/editor
Altskär, Annika
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Food Hydrocolloids
Food Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 117 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf