Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of elongational flow on phase separated inclusions within gelling biopolymer drops
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.ORCID iD: 0000-0001-9979-5488
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
2004 (English)In: Food Hydrocolloids, ISSN 0268-005X, E-ISSN 1873-7137, Vol. 18, no 5, p. 805-815Article in journal (Refereed) Published
Abstract [en]

Drops of an immiscible biopolymer mixture containing maltodextrin/gelatine were shaped and set in an elongational flow in a flow cell called 4-RM. The kinetics of phase separation as well as the kinetics of gel formation were governed by the temperature differences which appear as the 60°C maltodextrin/gelatine mixture reaches the 10°C silicon oil in the 4-RM. The shape and inner structure of the drops were visualized with the help of a confocal laser scanning microscope (CLSM). The result showed that the solution phase separated into gelatine-rich and a maltodextrin-rich phase during the short time it takes to gel the particle, i.e. in approximately 2 s. It was found that the shape of the phase separated inclusions was affected by the elongational flow. Mixtures of a 10% constant gelatine concentration and a 2-15% maltodextrin concentration were evaluated. The size of the inclusions within the phase separated drops increases as the maltodextrin concentration increases. At a maltodextrin concentration of 12%, the phase inversion has occurred. Shape transfer between the drop and its inclusions was investigated. The length to width ratios of the drops and its inclusions were compared and it was found that for the gelatine-continuous drop created at a flow rate of 10 rpm the ratio responds well. A comparison of the Taylor parameter calculated from viscosity data before gel formation and image analysis of experimental results showed that deformation takes place within the critical stage of gel formation. © 2004 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
2004. Vol. 18, no 5, p. 805-815
Keywords [en]
Food Engineering
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8595DOI: 10.1016/j.foodhyd.2003.12.006OAI: oai:DiVA.org:ri-8595DiVA, id: diva2:966467
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2023-05-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.scopus.com/inward/record.url?eid=2-s2.0-3042686695&partnerID=40&md5=4a77f2cffa016656c9c9288fa214a5ac

Authority records

Loren, Niklas

Search in DiVA

By author/editor
Loren, Niklas
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Food Hydrocolloids
Food Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf