Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of molecular weight on permeability and microstructure of mixed ethyl-hydroxypropyl-cellulose films
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik. Chalmers University of Technology, Sweden.
AstraZeneca, Sweden.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik. Chalmers University of Technology, Sweden.ORCID iD: 0000-0003-0310-4465
AstraZeneca, Sweden.
Show others and affiliations
2013 (English)In: European Journal of Pharmaceutical Sciences, ISSN 0928-0987, E-ISSN 1879-0720, Vol. 48, no 42006, p. 240-248Article in journal (Refereed) Published
Abstract [en]

Films of ethyl cellulose (EC) and water-soluble hydroxypropyl cellulose (HPC) can be used for extended release coatings in oral formulations. The permeability and microstructure of free EC/HPC films with 30% w/w HPC were studied to investigate effects of EC molecular weight. Phase separation during film spraying and subsequent HPC leaching after immersion in aqueous media cause pore formation in such films. It was found that sprayed films were porous throughout the bulk of the films after water immersion. The molecular weight affected HPC leaching, pore morphology and film permeability; increasing the molecular weight resulted in decreasing permeability. A model to distinguish the major factors contributing to diffusion retardation in porous films showed that the trend in permeability was determined predominantly by factors associated with the geometry and arrangement of pores, independent of the diffusing species. The film with the highest molecular weight did, however, show an additional contribution from pore wall/permeant interactions. In addition, rapid drying and increasing molecular weight resulted in smaller pores, which suggest that phase separation kinetics affects the final microstructure of EC/HPC films. Thus, the molecular weight influences the microstructural features of pores, which are crucial for mass transport in EC/HPC films.

Place, publisher, year, edition, pages
2013. Vol. 48, no 42006, p. 240-248
Keywords [en]
Food Engineering
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8529DOI: 10.1016/j.ejps.2012.11.003PubMedID: 23159668Scopus ID: 2-s2.0-84870709796OAI: oai:DiVA.org:ri-8529DiVA, id: diva2:966401
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2023-05-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Stading, Mats

Search in DiVA

By author/editor
Stading, Mats
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
European Journal of Pharmaceutical Sciences
Food Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 368 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf