Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH
SIK – Institutet för livsmedel och bioteknik.
SIK – Institutet för livsmedel och bioteknik.
2013 (English)In: BMC Oral Health, ISSN 1472-6831, E-ISSN 1472-6831, Vol. 13, no 1, p. 4-Article in journal (Refereed)
Abstract [en]

Background: With the rising demand for osseointegrated titanium implants for replacing missing teeth, often in patients with a history of periodontitis, implant-related infections have become an issue of growing concern. Novel methods for treating and preventing implant-associated infections are urgently needed. The aim of this study was to investigate if different pH, atmosphere and surface properties could restrict bacterial adhesion to titanium surfaces used in dental implants. Methods: Titanium discs with machined or anodized (TiUnite™) surface were incubated with a co-culture of Streptococcus mitis and Actinomyces oris (early colonizers of oral surfaces) at pH 5.0, 7.0 and 9.0 at aerobic or anaerobic atmosphere. The adhesion was analysed by counting colony forming (CFU) units on agar and by confocal laser scanning microscopy (CLSM).Results: The CFU analysis showed that a pH of 5.0 was found to significantly decrease the adhesion of S. mitis, and an aerobic atmosphere, the adhesion of A. oris. S. mitis was found in significantly less amounts on the anodized surface than the machined surface, while A. oris was found in equal amounts on both surfaces. The CLSM analysis confirmed the results from the CFU count and provided additional information on how the two oral commensal species adhered to the surfaces: mainly in dispersed clusters oriented with the groves of the machined surface and the pores of the anodized surface. Conclusions: Bacterial adhesion by S. mitis and A. oris can be restricted by acidic pH and aerobic atmosphere. The anodized surface reduced the adhesion of S. mitis compared to the machined surface; while A. oris adhered equally well to the pores of the anodized surface and to the grooves of the machined surface. It is difficult to transfer these results directly into a clinical situation. However, it is worth further investigating these findings from an in vitro perspective, as well as clinically, to gain more knowledge of the effects acid pH and aerobic atmosphere have on initial bacterial adhesion. © 2013 Seth Caous et al.; licensee BioMed Central Ltd.

Place, publisher, year, edition, pages
2013. Vol. 13, no 1, p. 4-
Keywords [en]
Food Engineering
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8407DOI: 10.1186/1472-6831-13-4PubMedID: 23298213OAI: oai:DiVA.org:ri-8407DiVA, id: diva2:966278
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84873060528&partnerID=40&md5=05b2f2af4bbd3a86a85db8c32cd66ed6
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
BMC Oral Health
Food Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7