Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Dendrimer diffusion in ?-carrageenan gel structures
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.ORCID iD: 0000-0001-9979-5488
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SIK – Institutet för livsmedel och bioteknik.
Show others and affiliations
2009 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 10, no 2, p. 275-284Article in journal (Refereed) Published
Abstract [en]

The effect of the ?-carrageenan concentration on gel microstructure and self-diffusion of polyamideamine dendrimers has been determined by transmission electron microscopy (TEM), image analysis, and nuclear magnetic resonance (NMR) diffusometry. Different salt conditions of KCl, NaCl, and mixtures thereof allowed for formation of significantly different microstructures. The ?-carrageenan concentrations were varied between 0.25 and 3.0 w/w% for a salt mixture containing 20 mM KCl and 200 mM NaCl gels and between 0.5 and 4.0 w/w% for 250 mM NaCl gels. Furthermore, the effect of potassium ion concentration on the gel structure and the dendrimer diffusion rate was determined. The potassium ion concentration was varied between 20 mM KCl and 200 mM KCl. Two different dendrimer generations with significant difference in size were used: G2 and G6. Dendrimers were found to be sensitive probes for determination of the effect of the gel microstructure on molecular diffusion rate. A qualitative comparison between TEM micrographs, NMR diffusometry data and image analysis showed that the gel structure has a large impact on the dendrimers diffusion in ?-carrageenan gels. It was found that diffusion was strongly influenced by the ?-carrageenan concentration and the dendrimer generation. Small voids in the gel network gave strongly reduced diffusion. Image analysis revealed that the interfacial area between the gel network and the surrounding water phase correlated well with the dendrimer diffusion. © 2009 American Chemical Society.

Place, publisher, year, edition, pages
2009. Vol. 10, no 2, p. 275-284
Keywords [en]
Food Engineering
Keywords [sv]
Livsmedelsteknik
National Category
Food Science
Identifiers
URN: urn:nbn:se:ri:diva-8392DOI: 10.1021/bm801013xPubMedID: 19166302OAI: oai:DiVA.org:ri-8392DiVA, id: diva2:966263
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2023-05-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedhttp://www.scopus.com/inward/record.url?eid=2-s2.0-64149107873&partnerID=40&md5=9d50e280b53d2c24495bfad205ac9606

Authority records

Loren, Niklas

Search in DiVA

By author/editor
Loren, Niklas
By organisation
SIK – Institutet för livsmedel och bioteknik
In the same journal
Biomacromolecules
Food Science

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf