Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterisation of submicron particles produced during oxygen blown entrained flow gasification of biomass
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Energy Technology Center.
Show others and affiliations
2014 (English)In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 161, no 7, 1923-1934 p.Article in journal (Refereed)
Abstract [en]

In this paper submicron particles sampled after the quench during 200kW, 2bar(a) pressurised, oxygen blown gasification of three biomass fuels, pure stem wood of pine and spruce, bark from spruce and a bark mixture, have been characterised with respect to particle size distribution with a low pressure cascade impactor. The particles were also characterised for morphology and elemental composition by a combination of scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and high resolution transmission electron microscopy/energy dispersive spectroscopy/selected area electron diffraction pattern (HRTEM/EDS/SAED) techniques. The resulting particle concentration in the syngas after the quench varied between 46 and 289mg/Nm3 consisting of both carbon and easily volatile ash forming element significantly depending on the fuel ash content. Several different types of particles could be identified from classic soot particles to pure metallic zinc particles depending on the individual particle relation of carbon and ash forming elements. The results also indicate that ash forming elements and especially zinc interacts in the soot formation process creating a particle with shape and microstructure significantly different from a classical soot particle. © 2014 The Combustion Institute.

Place, publisher, year, edition, pages
2014. Vol. 161, no 7, 1923-1934 p.
Keyword [en]
Biomass, Gasification, HRTEM, SAED, Soot, Zinc
Keyword [sv]
Energiteknik
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:ri:diva-6940DOI: 10.1016/j.combustflame.2014.01.004Scopus ID: 2-s2.0-84901625416OAI: oai:DiVA.org:ri-6940DiVA: diva2:964795
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus
By organisation
SP Energy Technology Center
In the same journal
Combustion and Flame
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.30.0