Wastewater produced during pressurized entrained flow biomass gasification (PEBG) was characterized and cleaned in order to raise the technology readiness level of the PEBG concept. Scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA) were used to study material found in the water. The material was removed using filtration and the concentration of dissolved organic carbon (DOC), polyaromatic hydrocarbons (PAHs) and metals in filtered water was studied using standardized methods. Water was sampled during operation at three oxygen equivalence ratios (λ) and the results were compared to concentrations of gaseous hydrocarbons in the syngas. As λ increased, the amount of soot in the wastewater and the amount of soot precursors in the syngas was reduced. As a result the concentration of particles in the water was reduced and their composition shifted toward a higher percentage of inorganics (ash). PAH concentration trends in the water and in the syngas correlated and dissolved organic material in the water was reduced with increased λ. A particle removal efficiency of 98-99% was achieved using sedimentation and filtration while the DOC was reduced from ≈2.5 mg L-1 to below detection limit using granular activated carbon (GAC). © 2014 American Chemical Society.