Measurements of mechanical quantities such as pressure often take place under dynamic conditions, yet no traceable standards for the primary dynamic calibration of pressure sensors currently exist. In theory, shock tubes can provide a close to perfect step-function ideal for the calibration of pressure transducers. In this paper we investigate a system consisting of a shock tube and an ultra-fast fiber-optical sensor that is designed to be a future primary system for dynamic pressure calibrations. For reference, the fiber-optical sensor is compared to a piezoelectric sensor, and their corresponding frequency spectra are calculated. Furthermore, an investigation of the repeatability of the fiber-optical sensor, as well as a comparison with a second shock tube, is performed.