Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automated knot detection for high speed computed tomography on Pinus sylvestris L. and Picea abies (L.) Karst. using ellipse fitting in concentric surfaces
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Förädling och processer (TRf). Luleå University of Technology, Sweden.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP – Sveriges Tekniska Forskningsinstitut / Förädling och processer (TRf).
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Sveriges tekniska forskningsinstitut, SP Trä. Luleå University of Technology, Sweden.
Luleå University of Technology, Sweden.
2013 (English)In: Computers and Electronics in Agriculture, ISSN 0168-1699, E-ISSN 1872-7107, Vol. 96, p. 238-245Article in journal (Refereed) Published
Abstract [en]

High speed industrial computed tomography (CT) scanning of sawlogs is new to the sawmill industry and therefore there are no properly evaluated algorithms for detecting knots in such images. This article presents an algorithm that detects knots in CT images of logs by segmenting the knots with variable thresholds on cylindrical shells of the CT images. The knots are fitted to ellipses and matched between several cylindrical shells. Parameterized knots are constructed using regression models from the matched knot ellipses. The algorithm was tested on a variety of Scandinavian Scots pine (. Pinus sylvestris L.) and Norway spruce (. Picea abies (L.) Karst.) with a knot detection rate of 88-94% and generating about 1% falsely detected knots.

Place, publisher, year, edition, pages
2013. Vol. 96, p. 238-245
Keywords [en]
Computed tomography, Image analysis, Knot, Picea abies, Pinus sylvestris, Sawmill
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-6461DOI: 10.1016/j.compag.2013.06.003Scopus ID: 2-s2.0-84880384633Local ID: 15233OAI: oai:DiVA.org:ri-6461DiVA, id: diva2:964299
Available from: 2016-09-08 Created: 2016-09-08 Last updated: 2021-06-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus
By organisation
SP – Sveriges Tekniska Forskningsinstitut / Förädling och processer (TRf)SP Trä
In the same journal
Computers and Electronics in Agriculture
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf