The interaction between moisture and the macromolecular wood tissue is of critical importance to wood properties. In this context, magnetic resonance imaging (MRI) is very promising as this method could deliver molecular information on the submillimeter scale (i.e., along concentration gradients) about both free and adsorbed water and the cell wall polymers. In the present study, it is demonstrated for the first time that wood containing adsorbed heavy water (2H2O) can be studied by MRI based on separated images due to water (2H MRI) and cell wall polymers (1H MRI). Data confirm that in specimens equilibrated at controlled humidity there is a direct correlation between bound water content and relative density of the polymers in wood tissue; there is a strong variation across annual rings.