Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable potential of textile-reinforced concrete
2015 (English)In: Journal of materials in civil engineering, ISSN 0899-1561, E-ISSN 1943-5533, Vol. 27, no 7, 4014207Article in journal (Refereed)
Abstract [en]

The building construction industry is in need of sustainable materials and solutions. A novel building material, such as textile-reinforced concrete (TRC), could be used to meet this demand. Textile-reinforced concrete is a combination of fine-grained concrete and multiaxial textile fabrics that has been fundamentally researched over the past decade. TRC-based research has explored various facets of this composite material, such as its structural functionality, production, applicability, and design. One key aspect that is still missing, however, is a comprehensive review of the sustainable potential of this material in terms of its input–output and durability that suitably answers to requirement No. 7 of EU’s Construction Products Regulation. This article provides qualitative and quantitative evaluation of the sustainable potential and prospective development of TRC particularly reinforced by alkali-resistant (AR) glass, carbon, or basalt fibers. Based on the outcome of this evaluation, carbon textile fibers were observed to hold the optimal potential mechanical behavior; additionally, it was revealed through the conducted life-cycle assessment (LCA) that basalt had the least cumulative energy demand, whereas carbon had the least environmental impact.

Place, publisher, year, edition, pages
2015. Vol. 27, no 7, 4014207
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:ri:diva-2679DOI: 10.1061/(ASCE)MT.1943-5533.0001160Local ID: 4967OAI: oai:DiVA.org:ri-2679DiVA: diva2:960282
Available from: 2016-09-07 Created: 2016-09-07 Last updated: 2017-11-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
In the same journal
Journal of materials in civil engineering
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.29.1