Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bacterial community diversity in paper mills processing recycled paper
Show others and affiliations
2010 (English)In: Journal of Industrial Microbiology & Biotechnology, ISSN 1367-5435, E-ISSN 1476-5535, Vol. 37, no 10, p. 1061-1069Article in journal (Refereed)
Abstract [en]

Paper mills processing recycled paper suffer from biofouling causing problems both in the mill and final product. The total bacterial community composition and identification of specific taxa in the process water and biofilms at the stock preparation and paper machine areas in a mill with recycled paper pulp was described by using a DNA-based approach. Process water in a similar mill was also analyzed to investigate if general trends can be found between mills and over time. Bacterial community profiles, analyzed by terminal-restriction fragment length polymorphism (T-RFLP), in process water showed that the dominant peaks in the profiles were similar between the two mills, although the overall composition was unique for each mill. When comparing process water and biofilm at different locations within one of the mills, we observed a separation according to location and sample type, with the biofilm from the paper machine being most different. 16S rRNA gene clone libraries were generated and 404 clones were screened by RFLP analysis. Grouping of RFLP patterns confirmed that the biofilm from the paper machine was most different. A total of 99 clones representing all RFLP patterns were analyzed, resulting in sequences recovered from nine bacterial phyla, including two candidate phyla. Bacteroidetes represented 45% and Actinobacteria 23% of all the clones. Sequences with similarity to organisms implicated in biofouling, like Chryseobacterium spp. and Brevundimonas spp., were recovered from all samples even though the mill had no process problems during sampling, suggesting that they are part of the natural paper mill community. Moreover, many sequences showed little homology to as yet uncultivated bacteria implying that paper mills are interesting for isolation of new organisms, as well as for bioprospecting. © Society for Industrial Microbiology 2010.

Place, publisher, year, edition, pages
2010. Vol. 37, no 10, p. 1061-1069
National Category
Agricultural Science, Forestry and Fisheries
Identifiers
URN: urn:nbn:se:ri:diva-2443DOI: 10.1007/s10295-010-0754-1PubMedID: 20544256Scopus ID: 2-s2.0-78149361388OAI: oai:DiVA.org:ri-2443DiVA, id: diva2:960033
Available from: 2016-09-07 Created: 2016-09-07 Last updated: 2020-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus
By organisation
JTI Institutet för Jordbruks- och Miljöteknik
In the same journal
Journal of Industrial Microbiology & Biotechnology
Agricultural Science, Forestry and Fisheries

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf