In this paper, the use of a surface ablation cell (SAC) to quantify the elemental compositional depth profile of float glass is presented. High spatial resolution data of 10-20 nm is reported. Elemental resolution is also high so that, for example, the tin hump, which is not normally observed in low iron borofloat glasses, is recorded with good resolution. The technique is based on a wet dissolution of the glass surface on a layer by layer basis using ordinary equipment available in most chemical laboratories. Due to its simple nature, the procedure required further collaborative investigation with other instrumental surface analytical techniques. The results obtained compare very favourably with those obtained by secondary ion mass spectrometry (SIMS). It is shown that sample pretreatment is important and directly affects the outcome of the investigation. The effects of acid concentration, and probably most other experimental parameters, are also shown to affect the step length in the profiling process. The future use of the SAC as a complementary technique for surface studies is foreseen both in laboratories and also in the production environment as a reliable off-line technique for surface characterisation. The technique was developed through a collaborative workprogramme devised by Technical Committee 2 (Chemical Durability and Analysis) a technical sub-committee of the International Commission on Glass (ICG/TC-02).