Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and biofilm formation
Department of Molecular Microbiology, VIB; Laboratory of Molecular Cell Biology, KU Leuven.
Centre of Microbial and Plant Genetics, KU Leuven.
Centre of Microbial and Plant Genetics, KU Leuven.
Department of Materials Engineering (MTM), KU Leuven.
Show others and affiliations
2016 (English)In: Journal of Antimicrobial Chemotherapy, ISSN 0305-7453, E-ISSN 1460-2091, Vol. 71, no 4, 936-945 p., dkv437Article in journal (Refereed) Published
Abstract [en]

Objectives: Biofilm-associated implant infections represent a serious public health problem. Covalent immobilization of antimicrobial agents on titanium (Ti), thereby inhibiting biofilm formation of microbial pathogens, is a solution to this problem. Methods: Vancomycin (VAN) and caspofungin (CAS) were covalently bound on Ti substrates using an improved processing technique adapted to large-scale coating of implants. Resistance of the VAN-coated Ti (VAN-Ti) and CAS-coated Ti (CAS-Ti) substrates against in vitro biofilm formation of the bacterium Staphylococcus aureus and the fungal pathogen Candida albicans was determined by plate counting and visualized by confocal laser scanning microscopy. The efficacy of the coated Ti substrates was also tested in vivo using an adapted biomaterial-associated murine infection model in which control-Ti, VAN-Ti or CAS-Ti substrates were implanted subcutaneously and subsequently challenged with the respective pathogens. The osseointegration potential of VAN-Ti and CAS-Ti was examined in vitro using human bone marrow-derived stromal cells, and for VAN-Ti also in a rat osseointegration model. Results: In vitro biofilm formation of S. aureus and C. albicans on VAN-Ti and CAS-Ti substrates, respectively, was significantly reduced compared with biofilm formation on control-Ti. In vivo, we observed over 99.9% reduction in biofilm formation of S. aureus on VAN-Ti substrates and 89% reduction in biofilm formation of C. albicans on CAS-Ti substrates, compared with control-Ti substrates. The coated substrates supported osseointegration in vitro and in vivo. Conclusions: These data demonstrate the clinical potential of covalently bound VAN and CAS on Ti to reduce microbial biofilm formation without jeopardizing osseointegration. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved.

Place, publisher, year, edition, pages
Oxford University Press, 2016. Vol. 71, no 4, 936-945 p., dkv437
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-405DOI: 10.1093/jac/dkv437OAI: oai:DiVA.org:ri-405DiVA: diva2:941617
Available from: 2016-06-22 Created: 2016-06-22 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text
By organisation
SP Food and Bioscience
In the same journal
Journal of Antimicrobial Chemotherapy
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.29.1