The mechanism by which modified wood resists decay has long been discussed, but is still not fully understood. A better understanding of decay resistance mechanisms could improve wood protection processes and product properties. In this study, the dynamics of brown rot decay in thermally modified wood was examined through measurements of mass loss, strength loss and gene expression. Close monitoring of mass loss over 120 days in thermally modified wood exposed to Postia placenta showed a delay in the onset of degradation compared to untreated wood, and once the degradation had started, the rate was lower. Thermally modified wood did not inhibit expression of wood degradation-related genes before mass loss and was similar to that in untreated wood once mass loss could be detected. Comparing gene expression as well as strength loss at the same stage of decay rather than at the same time after exposure showed smaller differences in decay patterns between thermally modified and untreated wood than previous results indicate. It is concluded that the key to understanding degradation resistance in thermally modified wood is to compare the decay patterns in thermally modified wood and untreated wood before mass loss occurs.