Matrix effects in nilotinib formulations with pH-responsive polymer produced by carbon dioxide-mediated precipitationShow others and affiliations
2015 (English)In: International Journal of Pharmaceutics, ISSN 0378-5173, E-ISSN 1873-3476, Vol. 494, no 1, p. 205-217, article id 15114Article in journal (Refereed) Published
Resource type
Text
Abstract [en]
Factors determining the pH-controlled dissolution kinetics of nilotinib formulations with the pH-titrable polymer hydroxypropyl methylcellulose phthalate, obtained by carbon dioxide-mediated precipitation, were mechanistically examined in acid and neutral environment. The matrix effect, modulating the drug dissolution, was characterized with a battery of physicochemical methodologies, including ToF-SIMS for surface composition, SAXS/WAXS and modulated DSC for crystallization characterization, and simultaneous UV-imaging and Raman spectroscopy for monitoring the dissolution process in detail. The hybrid particle formulations investigated consisted of amorphous nilotinib embedded in a polymer matrix in single continuous phase, displaying extended retained amorphicity also under wet conditions. It was demonstrated by Raman and FTIR spectroscopy that the efficient drug dispersion and amorphization in the polymer matrix were mediated by hydrogen bonding between the drug and the phthalate groups on the polymer. Simultaneous Raman and UV-imaging studies of the effect of drug load on the swelling and dissolution of the polymer matrix revealed that high nilotinib load prevented matrix swelling on passage from acid to neutral pH, thereby preventing re-precipitation and re-crystallization of incorporated nilotinib. These findings provide a mechanistic foundation of formulation development of nilotinib and other protein kinase inhibitors, which are now witnessing an intense therapeutic and industrial attention due to the difficulty in formulating these compounds so that efficient oral bioavailability is reached.
Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 494, no 1, p. 205-217, article id 15114
Keywords [en]
amorphous, dissolution, nilotinib, pH sensitive polymer, protein kinase inhibitor, UV imaging
National Category
Pharmaceutical Sciences Physical Chemistry
Identifiers
URN: urn:nbn:se:ri:diva-150DOI: 10.1016/j.ijpharm.2015.08.031Scopus ID: 2-s2.0-84939788487OAI: oai:DiVA.org:ri-150DiVA, id: diva2:939301
Note
Publication no: A3573
2016-06-182016-06-072023-06-05Bibliographically approved