System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adsorption behavior and adhesive properties of biopolyelectrolyte multilayers formed from cationic and anionic starch
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Processum.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Processum.
2009 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 10, no 7, p. 1768-1776Article in journal (Refereed) Published
Abstract [en]

Cationic starch (D.S. 0.065) and anionic starch (D.S. 0.037) were used to form biopolyelectrolyte multilayers. The influence of the solution concentration of NaCl on the adsorption of starch onto silicon oxide substrates and on the formation of multilayers was investigated using stagnation point adsorption reflectometry (SPAR) and quartz crystal microbalance with dissipation (QCM-D). The wet adhesive properties of the starch multilayers were examined by measuring pull-off forces with the AFM colloidal probe technique. It was shown that polyelectrolyte multilayers (PEM) can be successfully constructed from cationic starch and anionic starch at electrolyte concentrations of 1 mM NaCl and 10 mM NaCl. The water content of the PEMs was approximately 80% at both electrolyte concentrations. However, the thickness of the PEMs formed at 10 mM NaCl was approximately twice the thickness formed at 1 mM NaCl. The viscoelastic properties of the starch PEMs, modeled as Voigt elements, were dependent on the polyelectrolyte that was adsorbed in the outermost layer. The PEMs appeared to be more rigid when capped by anionic starch than when capped by cationic starch. The wet adhesive pull-off forces increased with layer number and were also dependent on the polyelectrolyte adsorbed in the outermost layer. Thus, starch PEM treatment has a large potential for increasing the adhesive interaction between solid substrates to levels higher than can be reached by a single layer of cationic starch. © 2009 American Chemical Society.

Place, publisher, year, edition, pages
2009. Vol. 10, no 7, p. 1768-1776
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-208DOI: 10.1021/bm900191sOAI: oai:DiVA.org:ri-208DiVA, id: diva2:936137
Available from: 2016-06-13 Created: 2016-06-13 Last updated: 2021-06-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text
By organisation
SP Processum
In the same journal
Biomacromolecules
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 65 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf