In the present work, the long fibre and middle fibre fraction of a thermomechanical pulp (TMP) was treated with polyelectrolyte multilayers (PEMs) of cationic and anionic starch and sheets were made from both the treated and untreated fractions. In separate experiments, different amounts of untreated fines were added to the PEM-treated fraction before sheets were prepared, and the results were also compared with PEM treatment of the entire pulp containing 17% fines before sheet preparation. The PEMs were made of two different combinations of starch, two cationic potato starches with DS values of 0.06 and 0.09, both in combination with an anionic potato starch with a DS of 0.04, at 0.010 M NaCl and pH 6.3. Sheets were formed using the Rapid Köthen sheet former and the resulting mechanical and optical sheet properties were evaluated. Four-layer PEM treatment of the long fibre and middle fraction resulted in significant improvements in in-plane and out-of-plane mechanical properties. However, a subsequent fines addition reduced the effect of the PEMs, and this is explained by a blocking of the necessary PEM interaction with the treated TMP long fibre and middle fraction by the subsequently added fines. PEM treatment of the entire pulp increased the amount of starch needed for PEM treatment, but improved the in-plane and out-of-plane mechanical properties compared with those of sheets prepared from a PEM-treated long fibre and middle fraction with a subsequent addition of fine material. The increase in the tensile index for sheets made from a PEMtreated long fibre and the middle fraction without a subsequent fines addition, however, was much larger.