Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1-allyl-3-methylimidazolium formate
Umeå University, Sweden.
Umeå University, Sweden.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Processum.ORCID iD: 0009-0009-0187-2779
Umeå University, Sweden; Åbo Akademi University, Finland.
Show others and affiliations
2013 (English)In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 88, no 12, p. 2209-2215Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: Enzymatic hydrolysis of cellulose in lignocellulosic materials suffers from slow reaction rates due to limited access to enzyme adsorption sites and to the high crystallinity of the cellulose. In this study, an attempt was made to facilitate enzymatic hydrolysis by pretreatment of cellulosic materials using the ionic liquid (IL) 1-allyl-3-methylimidazolium formate ([Amim][HCO2]) under mild reaction conditions. The effect of the IL was compared with that of thermochemical pretreatment under acidic conditions. RESULTS: The lignocellulosic substrates investigated were native and thermochemically pretreated Norway spruce and sugarcane bagasse. Microcrystalline cellulose (Avicel) was included for comparison. The IL treatments were performed in the temperature range 45-120°C and, after regeneration and washing of the cellulosic substrates, enzymatic saccharification was carried out at 45°C for 72h. After 12h of hydrolysis, the glucose yields from regenerated native spruce and sugarcane bagasse were up to nine times higher than for the corresponding untreated substrates. The results also show positive effects of pretreatment using [Amim][HCO2] on the hydrolysis of xylan and mannan. Conclusion: The present work demonstrates that both native wood and agricultural residues are readily soluble in [Amim][HCO2] under gentle conditions, and that pretreatment with ionic liquids such as [Amim][HCO2] warrants further attention as a potential alternative to conventional pretreatment techniques.

Place, publisher, year, edition, pages
2013. Vol. 88, no 12, p. 2209-2215
Keywords [en]
1-allyl-3-methylimidazolium formate, Enzymatic hydrolysisIonic liquid, Lignocellulose, Pretreatment
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:ri:diva-188DOI: 10.1002/jctb.4089Scopus ID: 2-s2.0-84887030509OAI: oai:DiVA.org:ri-188DiVA, id: diva2:935972
Available from: 2016-06-13 Created: 2016-06-13 Last updated: 2023-12-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Alriksson, Björn

Search in DiVA

By author/editor
Alriksson, Björn
By organisation
SP Processum
In the same journal
Journal of chemical technology and biotechnology (1986)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf