Antimicrobial peptides (AMPs) have emerged as a new class of drug candidates for the treatment of infectious diseases. Here we describe a novel AMP, HLR1r, which is structurally derived from the human milk protein lactoferrin and demonstrates a broad spectrum microbicidal action in vitro. The minimum concentration of HLR1r needed for killing ≥99% of microorganisms in vitro, was in the range of 3-50 μg/ml for common Gram-negative and Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and for the yeast Candida albicans, when assessed in diluted brain-heart infusion medium. We found that HLR1r also possesses anti-inflammatory properties as evidenced by inhibition of tumor necrosis factor alpha (TNF-α) secretion from human monocyte-derived macrophages and by repression of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1) secretion from human mesothelial cells, without any cytotoxic effect observed at the concentration range tested (up to 400 μg/ml). HLR1r demonstrated pronounced anti-infectious effect in in vivo experimental models of cutaneous candidiasis in mice and of excision wounds infected with MRSA in rats as well as in an ex vivo model of pig skin infected with S. aureus. In conclusion, HLR1r may constitute a new therapeutic alternative for local treatment of skin infections.
SP Chemistry, Materials and Surfaces Publication nr A3668