Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Is the boundary layer of an ionic liquid equally lubricating at higher temperature?
KTH The Royal Institute of Technology, Sweden.
University of Newcastle, Australia.
RISE, SP – Sveriges Tekniska Forskningsinstitut, SP Kemi Material och Ytor, Life Science. KTH Royal Institute of Technology, Sweden.ORCID iD: 0000-0002-8935-8070
2016 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 18, no 13, p. 9232-9239Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2016. Vol. 18, no 13, p. 9232-9239
National Category
Physical Chemistry Tribology (Interacting Surfaces including Friction, Lubrication and Wear) Condensed Matter Physics
Identifiers
URN: urn:nbn:se:ri:diva-83DOI: 10.1039/c5cp05837fScopus ID: 2-s2.0-84962045180OAI: oai:DiVA.org:ri-83DiVA, id: diva2:930603
Available from: 2016-05-24 Created: 2016-04-28 Last updated: 2019-06-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Rutland, Mark W.

Search in DiVA

By author/editor
Rutland, Mark W.
By organisation
Life Science
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Physical ChemistryTribology (Interacting Surfaces including Friction, Lubrication and Wear)Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 22 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
v. 2.35.7