Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Natural Fiber-based Nanocomposites as Corrosion Inhibitors
SLU Swedish University of Agricultural Sciences, Sweden.ORCID iD: 0000-0003-2661-7802
Khulna University, Bangladesh.
Khulna University, Bangladesh.
Khulna University, Bangladesh.
Show others and affiliations
2022 (English)In: Anticorrosive Nanomaterials: Future Perspectives, Royal Society of Chemistry (RSC) , 2022Chapter in book (Other academic)
Abstract [en]

Corrosion constitutes one of the troublesome issues in different industries, i.e., automotive, marine, construction, oil and gas. Protection from corrosion aims at reducing maintenance costs with higher production for the industry. Due to high toxicity, chromate-based coatings remain an environmental concern. This has necessitated the development of an organic-based coating with higher anti-corrosive performance. The adhesion capability of coating on metal surfaces can be improved through the incorporation of nanocomposites, which in turn can protect the metal from corrosion. Owing to their novel mechanical and electrochemical properties, types of nanocomposites dictate the types of nanostructured filler. The inclusion of cellulose nanocrystal (CNC) in epoxy-Zn rich coating shows better anti-corrosive performance for mild steel. In addition, silver nanoparticles and chitosan-based nanocomposite coating can protect mild steel from corrosion. However, the performance of the nanocomposite coating depends on the types of nanoparticles and additives, the concentration of the dispersed particles and mixing processes. In this chapter, the use of natural fiber-based nanocomposites in corrosion protection, and their synthesis and performance have been discussed. Alongside this, the potential of natural fiber-based nanocomposites for corrosion protection has been pointed out.

Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC) , 2022.
Series
RSC nanoscience and nanotechnology
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:ri:diva-74561DOI: 10.1039/9781839166259-00191OAI: oai:DiVA.org:ri-74561DiVA, id: diva2:1881924
Available from: 2024-07-04 Created: 2024-07-04 Last updated: 2024-08-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Das, Atanu Kumar

Search in DiVA

By author/editor
Das, Atanu Kumar
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 16 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf