Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formulation and Characterization of Formaldehyde-Free Chemically Modified Bone-Based Adhesive for Lignocellulosic Composite Products
Khulna University, Bangladesh.
Khulna University, Bangladesh.
Khulna University, Bangladesh.
Shushilan, Bangladesh.
Show others and affiliations
2021 (English)In: Global Challenges, E-ISSN 2056-6646, Vol. 5, no 9Article in journal (Refereed) Published
Abstract [en]

This study investigates the efficacy of chemically modified bone adhesive as a formaldehyde-free binder for wood-based industries. Two different types of adhesive are formulated after chemical modification of bone powder using sulfuric acid (0.5 m) and polyvinyl acetate (PVA). Gel time, solid content, Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), viscosity, and single lap joint test for shear strength are analyzed in order to assess the adhesive properties. To analyze the efficacy of the formulated adhesive, particleboards are fabricated using boiled and unboiled sugarcane bagasse. The physical and mechanical properties of the fabricated panels are measured following ASTM standards. It is found that adhesive Type C (T-C) has the shortest gel time of 4.2 min for the highest shear strength, i.e., 5.31 MPa. The particleboard (BTC-2) fabricated using T-C adhesive shows a highest density of 0.73 g cm−3, a modulus of elasticity (MOE) of 1975 N mm−2, and a modulus of rupture (MOR) of 11.80 N mm−2. The dimensional stability of the fabricated particleboards does not follow the standard requirements; however, further study might be helpful for using the chemically modified bone adhesive as a biobased adhesive.

Place, publisher, year, edition, pages
Wiley , 2021. Vol. 5, no 9
Keywords [en]
biobased adhesive, chemical modification, mechanical properties, particleboards, physical properties, sugarcane bagasse
National Category
Wood Science
Identifiers
URN: urn:nbn:se:ri:diva-74568DOI: 10.1002/gch2.202100002OAI: oai:DiVA.org:ri-74568DiVA, id: diva2:1881659
Available from: 2024-07-03 Created: 2024-07-03 Last updated: 2024-08-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Das, Atanu Kumar

Search in DiVA

By author/editor
Das, Atanu Kumar
Wood Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf