Combustion Processes in a Biomass Fuel Bed-Experimental Results Show others and affiliations
2008 (English) In: Progress in Thermochemical Biomass Conversion, Wiley Blackwell , 2008, p. 743-757Chapter in book (Other academic)
Abstract [en]
Combustion processes in a biomass bed are investigated experimentally. Special attention is paid to the influence of primary airflow and particle properties on the ignition front, its temperature and on the composition of the gas leaving the front. Two test rigs have been built: a large rig in the same size as a boiler for domestic use and a small laboratory test rig. In both rigs the ignition front moves in opposite direction to the primary airflow. Three combustion regimes are identified: a sub-stoichiometric regime with incomplete consumption of oxygen, a sub-stoichiometric regime with complete consumption of oxygen and an over-stoichiometric regime. The results show that a fuel with higher density and thermal conductivity (but in other respects similar to other fuels) has a wider sub-stoichiometric regime where oxygen is cornpletely consumed. If the particle size is increased (for the same fuel quality) the airflow range of this regime becomes shorter and starts at higher airflow.
Place, publisher, year, edition, pages Wiley Blackwell , 2008. p. 743-757
Keywords [en]
Combustion processes, Downdraught combustion, Glass-wool cover, Thermocouples, Thunman and leckner, Fuels, Oxygen, Particle size, Thermal conductivity, Biomass fuels, Combustion pro-cess, Combustion regime, Glass wool, Laboratory test, Over-stoichiometric, Particle properties, Combustion
National Category
Engineering and Technology
Identifiers URN: urn:nbn:se:ri:diva-72424 DOI: 10.1002/9780470694954.ch59 Scopus ID: 2-s2.0-84949206916 ISBN: 9780470694954 (print) ISBN: 0632055332 (print) ISBN: 9780632055333 (print) OAI: oai:DiVA.org:ri-72424 DiVA, id: diva2:1846897
2024-03-252024-03-252024-03-25 Bibliographically approved