This paper introduces a novel approach to designing autonomous gate drivers for soft-switched buck converters. The objective is to reduce switching losses, enhance converter efficiency, and reduce electromagnetic interference (EMI). The uniqueness of this converter is that the pulse-width modulation is performed autonomously on the gate driver. The gate driver makes quick decisions on switching times, capitalizing on the minimal time delay between measurements and switching. In the proposed buck converter configuration, the gate driver senses both the current and voltage across the switches to avoid delay. When a slightly negative voltage is detected across the switch, it rapidly turns on, resulting in a zero-voltage switching (ZVS). With an external snubber capacitor placed across the switches, the turn-off switching losses are zero (ZVS). Hence, both the turn-on and turn-off of the switch are soft. To enable the switch to turn off, a reference value of the switch current needs to be sent out to the gate driver using a galvanically isolated current sensor. Through this approach, the efficiency of the 7 kW buck converter has been calculated to exceed 99% without including the filter losses. Additional benefits include reduced switch stresses, diminished electromagnetic interference (EMI), and simplified thermal management.