Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preamble-Free Synchronization Based on Dual-chirp Waveforms for Photonic THz-ISAC
Zhejiang University, China.
Zhejiang University, China.
Zhejiang University, China.
Zhejiang University, China.
Show others and affiliations
2024 (English)In: Journal of Lightwave Technology, ISSN 0733-8724, E-ISSN 1558-2213, Vol. 42, no 8, p. 2657-Article in journal (Refereed) Published
Abstract [en]

The integrated sensing and communication (ISAC) systems based on the linear frequency modulation (LFM) waveforms have attracted substantial attention. However, existing routines suffer from additional synchronization preamble overhead, which limits both communication and sensing performance. This work, using the dual-chirp with opposite slopes, exploits a preamble-free synchronization scheme for the LFM-based ISAC. We first theoretically analyze the quasi-orthogonal property of the proposed dual-chirp LFM waveform and derive its achievable communication rate and range ambiguity function. A photonics-assisted proof-of-concept ISAC experiment is conducted in the 300 GHz frequency band, achieving a 20 Gbps data rate with a distinguished peak sidelobe ratio (PSLR) of up to 29.2 dB and 1.5 cm range resolution. More importantly, less than 0.5% synchronous power overhead is needed in our scheme. In addition, the performance trade-off induced by the data rate and amplitude ratio is validated in the experiment, which is in line with our theoretical analysis. Therefore, the proposed scheme provides a promising solution for synchronizing LFM-based future ISAC systems.

Place, publisher, year, edition, pages
2024. Vol. 42, no 8, p. 2657-
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:ri:diva-70021DOI: 10.1109/JLT.2023.3344788Scopus ID: 2-s2.0-85192257079OAI: oai:DiVA.org:ri-70021DiVA, id: diva2:1829234
Available from: 2024-01-18 Created: 2024-01-18 Last updated: 2024-05-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ozolins, OskarsPang, Xiaodan

Search in DiVA

By author/editor
Ozolins, OskarsPang, Xiaodan
By organisation
Industrial Systems
In the same journal
Journal of Lightwave Technology
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 10 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf