Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Commissioning, performance benchmarking, and investigation of alkali emissions in a 10 kWth solid fuel chemical looping combustion pilot
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.ORCID iD: 0000-0003-2454-3870
Chalmers University of Technology, Sweden.
Chalmers University of Technology, Sweden.
2021 (English)In: Fuel, ISSN 0016-2361, E-ISSN 1873-7153, Vol. 287Article in journal (Refereed) Published
Abstract [en]

Chemical looping combustion of biomass-sourced fuels (bio-CLC) is a novel bio-energy with carbon capture and storage (BECCS) technology for power and heat generation with net negative CO2 emissions. In this study, a new 10 kWth CLC pilot designed for high-volatiles biomass fuels was commissioned with ilmenite oxygen carrier and five different biomass fuels of varying volatile and alkali content fractions. The system was tested for its ability to convert high and low volatile content biomass, while achieving high carbon capture efficiency. The new pilot achieved carbon capture close to 100% for high-volatiles biomass, and >94% for low-volatiles biomass char fuels. Furthermore, due to the implementation of a volatiles distributor, the new pilot demonstrated an improvement of up to 10 percentage points of gas conversion efficiency for high-volatiles biomass vs. the previous generation reactor. Gaseous alkali emissions were measured with a surface ionization detection system. Flue gas alkali release levels were found to rise with higher fuel alkali content. Alkali emissions were found to be approximately similar in the AR and the FR for all but the straw pellet mixture fuel (highest alkali content fuel). For the straw pellet mixture, gaseous alkali release levels in the AR were up to seven times higher than those of the FR. In all cases, over 96% of the fuel’s alkalis were absorbed by the ilmenite bed material. Ilmenite’s strong alkali absorption characteristics were concluded to be the key determinant of gas-phase release of biomass alkali in the conducted experiments. 

Place, publisher, year, edition, pages
Elsevier Ltd , 2021. Vol. 287
Keywords [en]
Benchmarking; Biomass; Carbon capture; Combustion; Fuel storage; Ilmenite; Ionization of gases; Mixtures; Pelletizing; Absorption characteristics; Capture efficiency; Chemical looping combustion; Key determinants; Percentage points; Performance benchmarking; Surface ionization; Volatile contents; Fuels
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:ri:diva-68754DOI: 10.1016/j.fuel.2020.119530Scopus ID: 2-s2.0-85095578667OAI: oai:DiVA.org:ri-68754DiVA, id: diva2:1824147
Available from: 2024-01-04 Created: 2024-01-04 Last updated: 2024-01-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Soleimanisalim, Amir H

Search in DiVA

By author/editor
Soleimanisalim, Amir H
In the same journal
Fuel
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf