Within the project Dyna-TTB, vibrational tests have been conducted on eight high-rise timber buildings, in Europe. A main objective of the project is to gain knowledge about damping in timber buildings to assist in predicting the accelerations, at the top of a building, due to wind-induced vibrations. One of the buildings is Eken (the oak) in Mariestad in Sweden. That building is seven stories tall, thus questionable as a tall timber building, yet an interesting test object. The building structure is made up of glue laminated timber beams and columns stabilized with glulam trusses. Forced vibration were conducted on Eken with the aim to estimate the building’s dynamic properties from test data. Estimates of the eigenfrequencies, mode shapes, and their scalings are useful both in the calculations of wind-induced vibrations and to calibrate numerical models. However, the most important outcome is estimates of the modal damping values. The damping impacts the acceleration and thus the serviceability of the building, and at the same time, it is very hard to model damping. So, during the design phase, one must rely on previous test data (of which very few exist for taller timber buildings) and rule of thumbs. It is therefore important to gain knowledge about the damping for timber buildings in order to enable good designs of future and taller timber buildings.
The research leading to these results has received funding from the ForestValue Research Programme which is a transnational research, development and innovation programme jointly funded by national funding organizations within the framework of the ERA-NET Cofund “ForestValue – Innovating forest-based bioeconomy.” The authors also express gratitude to the building owner Mariehus for allowing us to perform the measurements.