In this study, oriented lab-sheets were produced from four different streams of base material. The reference stream was a blend virgin hardwood and softwood fibers, 50% of each. The three other streams were made of recycled material. The first recycled stream was a pure stream of unused paperboard, corresponding to “clippings”. The second recycled stream was composed of a selection of used corrugated boxes as well as some test liner. The third and final recycled stream was made to match a “1.02 quality” and consisted of 30% each of the other recycled streams and 40% journal paper. The streams were assessed with respect to repulpability (rejects, yield, adhesiveness, and visual inhomogeneity). The lab-sheets produced from each stream were evaluated through extensive mechanical testing at standard climate 23°C and 50% RH. The tests included: tensile tests, SCT, ZD-tension and compression, BCT on converted boxes and bending. Tensile tests were also performed on dried out samples as well as samples that had been conditioned at 90% RH. The repulpability study indicated that all three recycled streams had a high yield, with low amounts of adhesiveness and inhomogeneities. The mechanical testing showed, as expected, that the sheets from all three recycled streams had, overall, much lower values for the measured properties then the sheets from the virgin stream. The sheets from the clippings-stream performed better from a mechanical perspective then the sheets from the other recycled streams which were quite similar in their performance. By testing three realistic but well-behaved recycled streams, a benchmark has been created which can be used as reference data for future assessments of recycled fibers from different sources.