Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tungsten based divertor development for Wendelstein 7-X
Max Planck Institute for Plasma Physics, Germany.
CEA Institute for Magnetic Fusion Research, France.
Max Planck Institute for Plasma Physics, Germany.
Max Planck Institute for Plasma Physics, Germany.
Show others and affiliations
2023 (English)In: Nuclear Materials and Energy, E-ISSN 2352-1791, Vol. 37, article id 101506Article in journal (Refereed) Published
Abstract [en]

Wendelstein 7-X, the world’s largest superconducting stellarator in Greifswald (Germany), started plasma experiments with a water-cooled plasma-facing wall in 2022, allowing for long pulse operation. In parallel, a project was launched in 2021 to develop a W based divertor, replacing the current CFC divertor, to demonstrate plasma performance of a stellarator with a reactor relevant plasma facing materials with low tritium retention. The project consists of two tasks: Based on experience from the previous experimental campaigns and improved physics modelling, the geometry of the plasma-facing surface of the divertor and baffles is optimized to prevent overloads and to improve exhaust. In parallel, the manufacturing technology for a W based target module is qualified. This paper gives a status update of project. It focusses on the conceptual design of a W based target module, the manufacturing technology and its qualification, which is conducted in the framework of the EUROfusion funded WPDIV program. A flat tile design in which a target module is made of a single target element is pursued. The technology must allow for moderate curvatures of the plasma-facing surface to follow the magnetic field lines. The target element is designed for steady state heat loads of 10 MW/m2 (as for the CFC divertor). Target modules of a similar size and weight as for the CFC divertor are assumed (approx. < 0.25 m2 and < 60 kg) using the existing water cooling infrastructure providing 5 l/s and roughly maximum 15 bar pressure drop per module. The main technology under qualification is based on a CuCrZr heat sink made either by additive manufacturing using laser powder bed fusion (LPBF) or by uniaxial diffusion welding of pre-machined forged CuCrZr plates. After heat treatment, the plasma-facing side of the heat sink is covered by W or if feasible by the more ductile WNiFe, preferably by coating or alternatively by hot isostatic pressing W based tiles with a soft OFE-Cu interlayer. Last step is a final machining of the plasma-exposed surface and the interfaces to the water supply lines and supports to correct manufacturing deformations.

Place, publisher, year, edition, pages
2023. Vol. 37, article id 101506
Keywords [en]
Wendelstein 7-X, Divertor, High heat flux, Additive manufacturing, Diffusion welding, Hot isostatic pressing, Galvanization, Plasma spraying, Tungsten, WNiFe, CuCrZr
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:ri:diva-67489DOI: 10.1016/j.nme.2023.101506OAI: oai:DiVA.org:ri-67489DiVA, id: diva2:1802003
Note

This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme (Grant Agreement No 101052200 — EUROfusion).

Available from: 2023-10-03 Created: 2023-10-03 Last updated: 2024-09-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Widlund, Ola

Search in DiVA

By author/editor
Widlund, Ola
By organisation
Applied Mechanics
In the same journal
Nuclear Materials and Energy
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 59 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf