Software product lines (SPLs) are based on reuse rationale to aid quick and quality delivery of complex products at scale. Deriving a new product from a product line requires reuse analysis to avoid redundancy and support a high degree of assets reuse. In this paper, we propose and evaluate automated support for recommending SPL assets that can be reused to realize new customer requirements. Using the existing customer requirements as input, the approach applies natural language processing and clustering to generate reuse recommendations for unseen customer requirements in new projects. The approach is evaluated both quantitatively and qualitatively in the railway industry. Results show that our approach can recommend reuse with 74% accuracy and 57.4% exact match. The evaluation further indicates that the recommendations are relevant to engineers and can support the product derivation and feasibility analysis phase of the projects. The results encourage further study on automated reuse analysis on other levels of abstractions.