System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Extending the Passive Region of CrFeNi-Based High Entropy Alloys
Uppsala University, Sweden.
RISE Research Institutes of Sweden, Safety and Transport, Electrification and Reliability. Jönköping University, Sweden.ORCID iD: 0000-0002-2788-960x
Uppsala University, Sweden.
Uppsala University, Sweden.
Show others and affiliations
2023 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 33, no 51, article id 2307897Article in journal (Refereed) Published
Abstract [en]

This study provides principles for designing new corrosion resistant high entropy alloys. The theoretical framework is a percolation model developed by Newman and Sieradzki that predicts the ability of an alloy to passivate, i.e., to form a protective surface oxide, based on its composition. Here, their model is applied to more complex materials than previously, namely amorphous CrFeNiTa and CrFeNiW alloys. Furthermore, the model describes a more complex passivation process: reforming the oxide layer above the transpassive potential of Cr. The model is used to predict the lowest concentration of Ta or W required to extend the passive region, yielding 11–14 at% Ta and 14–17 at% W. For CrFeNiTa, experiments reveal a threshold value of 13–15 at% Ta, which agrees with the prediction. For CrFeNiW, the experimentally determined threshold value is 37–45 at% W, far above the predicted value. Further investigations explore why the percolation model fails to describe the CrFeNiW system; key factors are the higher nobility and the pH sensitivity of W. These results demonstrate some limitations of the percolation model and offer complementary passivation criteria, while providing a design route for combining the properties of the 3d transition metal and refractory metal groups. 

Place, publisher, year, edition, pages
John Wiley and Sons Inc , 2023. Vol. 33, no 51, article id 2307897
Keywords [en]
Cobalt alloys; Corrosion resistance; Entropy; Functional materials; High-entropy alloys; Iron alloys; Passivation; Refractory metals; Tantalum alloys; Ternary alloys; Complex materials; Corrosion-resistant; High entropy alloys; Materials design; Passivation process; Percolation models; Percolation theory; Surface oxide; Theoretical framework; Threshold-value; Solvents
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:ri:diva-67359DOI: 10.1002/adfm.202307897Scopus ID: 2-s2.0-85170376146OAI: oai:DiVA.org:ri-67359DiVA, id: diva2:1799412
Note

The authors acknowledged Myfab Uppsala for providing facilities and experimental support. Myfab is funded by the Swedish Research Council (2019‐00207) as a national research infrastructure. This study was performed in the framework of the competence center FunMat‐II which is financially supported by Vinnova (Grant No. 2016‐05156). L.M. and P.L. acknowledged the funding from Swedish Foundation for Strategic Research (Project No. ARC19‐0026) and the Smart Industry Sweden project funded by the Swedish Knowledge Foundation.

Available from: 2023-09-22 Created: 2023-09-22 Last updated: 2024-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Mølmen, LiveLeisner, Peter

Search in DiVA

By author/editor
Mølmen, LiveLeisner, Peter
By organisation
Electrification and Reliability
In the same journal
Advanced Functional Materials
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 91 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf