Carboxylated nanocellulose for wound healing applications – Increase of washing efficiency after chemical pre-treatment and stability of homogenized gels over 10 monthsShow others and affiliations
2023 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 314, article id 120923Article in journal (Refereed) Published
Abstract [en]
To commercialize a biomedical product as a medical device, reproducibility of production and time-stability are important parameters. Studies of reproducibility are lacking in the literature. Additionally, chemical pre-treatments of wood fibres to produce highly fibrillated cellulose nanofibrils (CNF) seem to be demanding in terms of production efficiency, being a bottleneck for industrial upscaling. In this study, we evaluated the effect of pH on the dewatering time and washing steps of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO)-mediated oxidized wood fibres when applying 3.8 mmol NaClO/g cellulose. The results indicate that the method does not affect the carboxylation of the nanocelluloses, and levels of approximately 1390 μmol/g were obtained with good reproducibility. The washing time of a Low-pH sample was reduced to 1/5 of the time required for washing a Control sample. Additionally, the stability of the CNF samples was assessed over 10 months and changes were quantified, the most pronounced were the increase of potential residual fibre aggregates, reduction of viscosity and increase of carboxylic acid content. The cytotoxicity and skin irritation potential were not affected by the detected differences between the Control and Low-pH samples. Importantly, the antibacterial effect of the carboxylated CNFs against S. aureus and P. aeruginosa was confirmed. © 2023 The Authors
Place, publisher, year, edition, pages
Elsevier Ltd , 2023. Vol. 314, article id 120923
Keywords [en]
Antibacterial, Degradation, Hydrolysis, Nanocellulose, TEMPO-oxidized fibres, Wound dressings, Chemical stability, Fibers, Gels, Nanofibers, pH, Production efficiency, Washing, Wood, 2, 2, 6, 6-tetramethylpiperidinyloxy-oxidized fiber, Antibacterials, Cellulose nanofibrils, Chemical pre-treatment, Nano-cellulose, Reproducibilities, Washing efficiency, Woodfiber, Wound healing applications, Carboxylation
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:ri:diva-64385DOI: 10.1016/j.carbpol.2023.120923Scopus ID: 2-s2.0-85152907526OAI: oai:DiVA.org:ri-64385DiVA, id: diva2:1754448
Note
Correspondence Address: Chinga-Carrasco, G.; RISE, Norway; email: gary.chinga.carrasco@rise-pfi.no; Funding details: Norges Forskningsråd, 309178; Funding text 1: The authors thank the Research Council of Norway for funding (OxyPol project - “Oxygenated biopolymers for biomedical applications”, grant no. 309178 ).
2023-05-032023-05-032023-11-03Bibliographically approved