Potential influence of microorganisms on the corrosion of the carbon steel in the French high-level long-lived nuclear waste disposal context at 50°CShow others and affiliations
2023 (English)In: Materials and corrosion - Werkstoffe und Korrosion, ISSN 0947-5117, E-ISSN 1521-4176, Vol. 74, p. 1177-Article in journal (Refereed) Published
Abstract [en]
In this study, short-term experiments were carried out to assess the microbially influenced corrosion (MIC) risk in the context of the French high-level radioactive waste disposal CIGEO (Centre Industriel de Stockage Géologique). The exposures were carried out in different representative media, including the presence of different cement-grout mixtures as filling material. Nonsterile and biotic conditions with nutrients were considered. For biotic conditions, specific preparations of microbial inoculum were carried out from samples collected at ANDRA's Underground Research Laboratory and microorganisms from the library. Corrosion kinetics were determined using both traditional coupons and completed with real-time electrical resistance sensors. Microbiological characterizations consisted of cultural approach, quantitative polymerase chain reaction, and next-generation sequencing. The obtained results show no significant MIC, but a reduced risk was observed using more alkaline filling materials. © 2023 The Authors.
Place, publisher, year, edition, pages
John Wiley and Sons Inc , 2023. Vol. 74, p. 1177-
Keywords [en]
carbon steel, cement, claystone, corrosion, disposal, microbially influenced corrosion, radioactive waste, Alkalinity, Cements, Microorganisms, Microwave integrated circuits, Radioactive wastes, Radioactivity, Research laboratories, Risk assessment, Steel corrosion, Biotic conditions, Cement grouts, Claystones, Corrosion risk, Filling materials, High level radioactive waste disposal, Microbially-influenced corrosions, Non-sterile condition, Nuclear waste disposal, Polymerase chain reaction
National Category
Microbiology
Identifiers
URN: urn:nbn:se:ri:diva-64016DOI: 10.1002/maco.202213679Scopus ID: 2-s2.0-85147271004OAI: oai:DiVA.org:ri-64016DiVA, id: diva2:1737126
2023-02-152023-02-152024-05-27Bibliographically approved