A micromechanics based model for rate dependent compression loaded unidirectional composites
2023 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 232, article id 109821Article in journal (Refereed) Published
Abstract [en]
Strain-rate effects in a unidirectional non-crimp fabric carbon/epoxy composite are addressed. To allow for kink-band formation including strain-rate effects and damage in such composites, the paper advances a recent model focused on compression loading at small off-axis angles. The model is based on computational homogenization with a subscale represented by matrix and fibre constituents at finite deformation. The fibre constituent is assumed to be elastic transversely isotropic and the matrix is viscoelastic–viscoplastic with damage degradation. Novel model improvements of special importance to small off-axis loading relate to the isostress formulation of the homogenized response in transverse shear. In this context, an enhanced homogenized elastic response is proposed based on Halpin–Tsai corrections to account for the nonuniform stress distribution on the microscale. The model captures the strongly rate sensitive kink-band formation due to localized matrix shearing and fibre rotation, confirming the experimentally observed increase in compressive strength for high strain rates. © 2022 The Author(s)
Place, publisher, year, edition, pages
Elsevier Ltd , 2023. Vol. 232, article id 109821
Keywords [en]
A. Structural composites, B. Non-linear behaviour, C. Damage mechanics, C. Material modelling, Viscoelasticity–viscoplasticity, Compressive strength, Strain rate, A structural composite, B non-linear behavior, C damage mechanic, C material modeling, Damage-mechanics, Material modeling, matrix, Nonlinear behaviours, Structural composites, Viscoelasticity
National Category
Applied Mechanics
Identifiers
URN: urn:nbn:se:ri:diva-61350DOI: 10.1016/j.compscitech.2022.109821Scopus ID: 2-s2.0-85142492701OAI: oai:DiVA.org:ri-61350DiVA, id: diva2:1717666
Note
Funding details: University of Patras; Funding details: H2020 Marie Skłodowska-Curie Actions, MSCA, 721256; Funding details: Stiftelsen för Strategisk Forskning, SSF, FID16-0041, P113521, SK-projects P108811; Funding text 1: The model development was funded by the Swedish Foundation for Strategic Research (SSF, dnr FID16-0041), with co-funding from RISE internal development funds, Sweden (SK-projects P108811 and P113521). The experiments were funded by the ICONIC project under the Marie Skłodowska-Curie, Sweden grant No 721256. G. Lampeas and B. Ravindran at University of Patras are acknowledged for assistance with experimental data, which allowed us to validate our model.; Funding text 2: The model development was funded by the Swedish Foundation for Strategic Research ( SSF, dnr FID16-0041 ), with co-funding from RISE internal development funds, Sweden (SK-projects P108811 and P113521). The experiments were funded by the ICONIC project under the Marie Skłodowska-Curie, Sweden grant No 721256 . G. Lampeas and B. Ravindran at University of Patras are acknowledged for assistance with experimental data, which allowed us to validate our model.
2022-12-092022-12-092023-06-07Bibliographically approved