A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data SetShow others and affiliations
2022 (English)In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Volume 13205 LNCS, Pages 39 - 522022, Springer Science and Business Media Deutschland GmbH , 2022, p. 39-52Conference paper, Published paper (Refereed)
Abstract [en]
This study applies a data-driven anomaly detection framework based on a Long Short-Term Memory (LSTM) autoencoder network for several subsystems of a public transport bus. The proposed framework efficiently detects abnormal data, significantly reducing the false alarm rate compared to available alternatives. Using historical repair records, we demonstrate how detection of abnormal sequences in the signals can be used for predicting equipment failures. The deviations from normal operation patterns are detected by analysing the data collected from several on-board sensors (e.g., wet tank air pressure, engine speed, engine load) installed on the bus. The performance of LSTM autoencoder (LSTM-AE) is compared against the multi-layer autoencoder (mlAE) network in the same anomaly detection framework. The experimental results show that the performance indicators of the LSTM-AE network, in terms of F1 Score, Recall, and Precision, are better than those of the mlAE network. © 2022, The Author(s)
Place, publisher, year, edition, pages
Springer Science and Business Media Deutschland GmbH , 2022. p. 39-52
Keywords [en]
Autoencoder, Fault detection, LSTM, Outliers, Time series, Anomaly detection, Buses, Engines, Network layers, Anomaly detection frameworks, Auto encoders, Case-studies, Data set, Data-driven anomalies, Detection framework, Faults detection, Multi-layers, Times series, Volvo bus, Long short-term memory
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:ri:diva-59249DOI: 10.1007/978-3-031-01333-1_4Scopus ID: 2-s2.0-85128784943ISBN: 9783031013324 (print)OAI: oai:DiVA.org:ri-59249DiVA, id: diva2:1668468
Conference
20th International Symposium on Intelligent Data Analysis, IDA 2022Rennes20 April 2022 through 22 April 2022
Note
Funding details: 2020-00767; Funding details: Fundação para a Ciência e a Tecnologia, FCT; Funding details: Vetenskapsrådet, VR; Funding text 1: This work was supported by the CHIST-ERA grant CHIST-ERA-19-XAI-012, project CHIST-ERA/0004/2019 funded by FCT - Funda¸cão para a Ciência e Tecnologia and project 2020-00767 funded by Swedish Research Council.
2022-06-132022-06-132023-11-06Bibliographically approved