Large-scale paper supercapacitors on demand Show others and affiliations
2022 (English) In: Journal of Energy Storage, ISSN 2352-152X, E-ISSN 2352-1538, Vol. 50, article id 104191Article in journal (Refereed) Published
Abstract [en]
Clean, sustainable electrical energy could be the next greatest challenge and opportunity of mankind. While the creation of clean energy has been proven, the storage of such energy requires much more research and development. Battery and energy storage technology today relies heavily on rare metals which cannot support large production needs of society. Therefore, the need for energy storage technology to be created sustainably is of great importance. Recently, conductive polymers, a class of organic materials, have shown impressive results in energy storage but requires further development if this technology is to be implemented in various energy storage applications. Here, we report a new ‘on demand’ design for supercapacitors that allows for individual devices in addition to devices in parallel and in series to increase the capacitance and voltage, respectively. The individual device showed impressive capacity up to 10 F while increasing the area with the large parallel device increased the capacitance to a record 127.8 F (332.8 mF/cm2). The ‘on demand’ design also allows paper supercapacitors to be in series to increase the operating voltage with an example device showing good charging behavior up to 5 V when 4 individual paper supercapacitors were arranged in series. Finally, the paper supercapacitors were incorporated into a prototype titled: ‘Norrkoping Starry Night’ which bridges the gap between art and science. An all-printed electrochromic display showing the city of Norrkoping, Sweden, complete with a touch sensor as an on/off switch and silicon solar cells to charge the paper supercapacitors is presented to bring several printed technologies together, highlighting the possibilities of the new paper supercapacitors within this report. © 2022
Place, publisher, year, edition, pages Elsevier Ltd , 2022. Vol. 50, article id 104191
Keywords [en]
Capacitance, Energy storage, Organic polymers, Storage (materials), Clean energy, Conductive Polymer, Electrical energy, Energy, Energy storage technologies, Individual devices, Large-scales, On demands, Rare metals, Research and development, Supercapacitor
National Category
Materials Chemistry
Identifiers URN: urn:nbn:se:ri:diva-58770 DOI: 10.1016/j.est.2022.104191 Scopus ID: 2-s2.0-85124619801 OAI: oai:DiVA.org:ri-58770 DiVA, id: diva2:1642103
Note Funding details: 2016–05193; Funding details: Stiftelsen för Strategisk Forskning, SSF, GMT14–0058; Funding details: VINNOVA, 05193; Funding text 1: This work was financially supported by the Swedish Foundation for Strategic Research ( GMT14–0058 ) and Vinnova through the Digital Cellulose Center (2016–05193). Authors of this manuscript were also supported by Treesearch.; Funding text 2: The authors would like to thank Patrik Arven for the work on the electrical components for the Norrkoping Starry night proof of concept device. This work was financially supported by the Swedish Foundation for Strategic Research (GMT14?0058) and Vinnova through the Digital Cellulose Center (2016?05193). Authors of this manuscript were also supported by Treesearch.
2022-03-032022-03-032024-03-22 Bibliographically approved