Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Collaborative Clustering: Sample Complexity and Efficient Algorithms
KTH Royal Institute of Technology, Sweden.
Korea Advanced Institute of Science and Technology, South Korea.
KTH Royal Institute of Technology, Sweden.
RISE Research Institutes of Sweden. KTH Royal Institute of Technology, Sweden.ORCID iD: 0000-0003-0995-9835
2017 (English)In: Proceedings of Machine Learning Research 76:1–42, 2017, 2017, Vol. 76, p. 288-329Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
2017. Vol. 76, p. 288-329
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:ri:diva-56403OAI: oai:DiVA.org:ri-56403DiVA, id: diva2:1593037
Available from: 2021-09-10 Created: 2021-09-10 Last updated: 2023-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

https://proceedings.mlr.press/v76/ok17a.html

Authority records

Mochaourab, Rami

Search in DiVA

By author/editor
Mochaourab, Rami
By organisation
RISE Research Institutes of Sweden
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf