Ice-templated cellulose nanofiber filaments as a reinforcement material in epoxy compositesShow others and affiliations
2021 (English)In: Nanomaterials, E-ISSN 2079-4991, Vol. 11, no 2, article id 490Article in journal (Refereed) Published
Abstract [en]
Finding renewable alternatives to the commonly used reinforcement materials in composites is attracting a significant amount of research interest. Nanocellulose is a promising candidate owing to its wide availability and favorable properties such as high Young’s modulus. This study addressed the major problems inherent to cellulose nanocomposites, namely, controlling the fiber structure and obtaining a sufficient interfacial adhesion between nanocellulose and a non-hydrophilic matrix. Unidirectionally aligned cellulose nanofiber filament mats were obtained via ice-templating, and chemical vapor deposition was used to cover the filament surfaces with an aminosilane before impregnating the mats with a bio-epoxy resin. The process resulted in cellulose nanocomposites with an oriented structure and a strong fiber–matrix interface. Diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopy studies revealed the presence of silane on the filaments. The improved interface, resulting from the surface treatment, was observable in electron microscopy images and was further confirmed by the significant increase in the tan delta peak temperature. The storage modulus of the matrix could be improved up to 2.5-fold with 18 wt% filament content and was significantly higher in the filament direction. Wide-angle X-ray scattering was used to study the orientation of cellulose nanofibers in the filament mats and the composites, and the corresponding orientation indices were 0.6 and 0.53, respectively, indicating a significant level of alignment. © 2021 by the authors.
Place, publisher, year, edition, pages
MDPI AG , 2021. Vol. 11, no 2, article id 490
Keywords [en]
Cellulose nanocomposite, Ice-templating, Interface, Mechanical properties, Orientation
National Category
Bio Materials
Identifiers
URN: urn:nbn:se:ri:diva-52491DOI: 10.3390/nano11020490Scopus ID: 2-s2.0-85100726039OAI: oai:DiVA.org:ri-52491DiVA, id: diva2:1538270
Note
Funding details: VINNOVA, 2018-04969; Funding details: Svenska Forskningsrådet Formas, 2019-02496; Funding details: Tekes, 1841/31/2014, 20190363; Funding details: Vetenskapsrådet, VR, 2018-07152; Funding text 1: Business Finland (formerly the Finnish Funding Agency for Technology and Innovation, TEKES) is acknowledged for their financial support (grant no. 1841/31/2014). Part of the work was carried out with the support of the Centre for Material Analysis, University of Oulu, Finland. We acknowledge Bio4Energy project for financial support, MAX IV Laboratory for time on beamline NanoMAX under Proposal 20190363. Research conducted at MAX IV, a Swedish national user facility, is supported by the Swedish Research Council under contract 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-04969, and Formas under contract 2019-02496. Treesearch Research Infrastructure is acknowledged for their financial support of the WAXS analysis at RISE.
2021-03-182021-03-182021-06-17Bibliographically approved