In a previous investigation, 3D-printed solid and topology optimized semi-industrial tools for forming and trimming of 2-mm thick hot-dip galvanized DP600 were certified. This certification required 50,000 strokes in U-bend forming and 100,000 strokes in trimming/cutting/blanking. The present paper focuses on the tool wear, the U-bend sheet surfaces, the shear and fracture zone lengths in trimming, and the punch forces in this certification. The 3D-printed tools behave as conventional tools do. Although small, there seems to be a difference in wear at the profile radius between the solid and topology optimized U-bending tool halves 3D-printed in maraging steel DIN1.2709.